C.U.SHAH UNIVERSITY

Winter Examination-2020

Subject Name: Basic Mathematics

Subject Code: 2TE01BMT2/2TE01BMT3 **Branch: Diploma (All)**

Semester: 1 Date: 09/03/2021 Time: 03:00 To 06:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

O-1 Attempt the following questions:

(14)

- a) If A(2,7) and B(-4,5) then mid-point of \overline{AB} is _____.
- a) (-2,12) b) (-1,6) c) $\left(-\frac{1}{2},3\right)$ d) (-2,2)
- **b)** If two straight lines $y = m_1 x + c \& y = m_2 x + c$ are parallel then _____.
 - a) $m_1 m_2 = -1$ b) $m_1 m_2 = 1$ c) $m_1 = m_2$ d) $m_1 = -m_2$

- c) The distance between the points (3,4) and (8,-6) is
- a) $\sqrt{5}$ b) $5\sqrt{5}$ c) $\sqrt{55}$ d) $3\sqrt{5}$
- **d)** If $\begin{vmatrix} x & 3 \\ 0 & -3 \end{vmatrix} = 0$ then x =_____.
- a) 2 b) 0 c) -1
- e) If $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ then $AB = \underline{\hspace{1cm}}$.

 - a) $\begin{bmatrix} 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 \end{bmatrix}$
- f) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is a square matrix then $A' = \underline{\hspace{1cm}}$.

- a) $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ b) $\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ c) $\begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ d) none of these

- a) n b) 0 c) 1 d) n-1

h) If
$$A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix}$$
 then $adjA = \underline{\qquad}$.

a)
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

b)
$$\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$$

a)
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
 b) $\begin{bmatrix} -1 & -2 \\ -3 & -4 \end{bmatrix}$ c) $\begin{bmatrix} -4 & 2 \\ 3 & -1 \end{bmatrix}$ d) $\begin{bmatrix} -4 & -2 \\ -3 & -1 \end{bmatrix}$

$$d) \begin{bmatrix} -4 & -2 \\ -3 & -1 \end{bmatrix}$$

i) _____is a constant term in the expansion of
$$\left(2x - \frac{3}{x}\right)^8$$
.

j) Constant term in the expansion of
$$(1-x)^4$$
 is _____.
a) -1 b) 0 c) 1 d) 4

k)
$$\frac{7\pi}{6}$$
 Radian = _____°.

- a) 310° b) 210° c) 420° d) 30°

1)
$$\sin \alpha \cos \beta - \cos \alpha \sin \beta =$$
_____.

a)
$$\sin(\alpha + \beta)$$

b)
$$\sin(\alpha - \beta)$$

a)
$$\sin(\alpha + \beta)$$
 b) $\sin(\alpha - \beta)$ c) $\cos(\alpha + \beta)$ d) $\cos(\alpha - \beta)$

d)
$$\cos(\alpha - \beta)$$

m) If
$$\theta = \frac{\pi}{4}$$
 then the value of $\sin \theta + \cos \theta =$ _____.

b)
$$\sqrt{2}$$

a) 2 b)
$$\sqrt{2}$$
 c) $\frac{1}{\sqrt{2}}$ d) -1

n)
$$\tan^2 \theta - \sec^2 \theta =$$
_____.
a) -1 b) 0 c) 1

- d) none of these

Attempt any four questions from Q-2 to Q-8

O-2 Attempt all questions

- a) In what ratio and at which point does the line y = x + 1 divide the line segment (05)joining the points (0,0) and (2,4)?
- (05)Find the equation of line passing through the point (1,-2) and perpendicular to the line passing through the points (-1,1) and (-2,-3).
- Show that the points (1,0), (-1,2) and (0,1) are collinear.

(04)

Q-3 Attempt all questions

- a) If $A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$ are two matrices then verify that $(AB)^T = B^T A^T$ (05)
- **b)** Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$. (05)

c) If
$$A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & -2 \\ 0 & 5 \\ 3 & 1 \end{bmatrix}$ then find matrix $A + 2B$ and $3A - 2B$. (04)

Q-4 Attempt all questions

a) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then prove that $A^2 - 4A - 5I = O$. (05)

- **b)** Solve the equations 2x y = 4 and 3x + y = 1 by using matrix method. (05)
- c) Use Binomial theorem to find approximate value of $\frac{1}{(1.05)^4}$ correct up to three decimal places. (04)

Q-5 Attempt all questions

a) Find the co-efficient of
$$x^4$$
 in the expansion of $(2x+y)^{10}$. (05)

b) Expand:
$$(2x+3y)^5$$
 (05)

c) Find the middle term in the binomial expansion of
$$\left(\frac{x}{2} - \frac{2}{y}\right)^8$$
. (04)

Q-6 Attempt all questions

a) Find the constant term of
$$\left(x - \frac{1}{x}\right)^{10}$$
. (05)

- **b)** Find the centre and radius of the circle $2x^2 + 2y^2 7x 3y + 1 = 0$. (05)
- c) Find the equation of the circle passing through (4,-5) and the centre is (3,5). (04)

Q-7 Attempt all questions

a) Evaluate: i)
$$\sin^2 30^\circ + \cos^2 45^\circ - \cos ec^2 60^\circ$$

ii) $\sec^2 660^\circ - \sin^2 30^\circ$ (05)

b) Draw the graph of
$$y = \sin 2x$$
, $0 \le x \le \pi$. (05)

c) If
$$\tan A = \frac{1}{2}$$
, $\left(0 < A < \frac{\pi}{2}\right)$ and $\tan B = \frac{1}{3}$ then find the value of $\tan \left(A + B\right)$. (04)

Q-8 Attempt all questions

a) Prove that
$$\frac{\sin 7A + \sin 3A}{\cos 3A - \cos 7A} = \cot 2A.$$
 (05)

b) If
$$\tan(A+B) = 3$$
 and $\tan(A-B) = 5$ then find $\tan 2A$ and $\tan 2B$. (05)

c) Prove that
$$\sin^2 \frac{\pi}{4} + \sin^2 \frac{3\pi}{4} + \sin^2 \frac{5\pi}{4} + \sin^2 \frac{7\pi}{4} = 2$$
 (04)

Page 4 of 4

